Cours:XR207 tp digicode

De troyesGEII
Révision datée du 4 février 2026 à 14:46 par Bjacquot (discussion | contributions) (Touche appuyée)
Aller à : navigation, rechercher
******************************************
*** Apporter la malette d'informatique ***
******************************************

Fiche résumé

Retour à la liste des Tps

Éléments de correction

Arduino-nano-pinout.png

Vous allez développer un système de digicode architecturé autour d'un atmega328p (le µcontrôleur présent sur les cartes arduino).

Pour ce TP, nous utilisons une carte arduino sans le shieldinfo

Matériel

Nous utiliserons :

  • 1 carte arduino NANO
  • 1 plaque à essais
  • 8 leds pour afficher une valeur
  • 1 résistance de 330Ω par led
  • 1 clavier matriciel
  • fils M-M
  • fils M-F

Informations lumineuses

Câblage

Todo.jpg Câbler sur une plaque à essais les 8 leds :

  • utiliser des résistances de 330Ω pour régler l'intensité lumineuse
  • PD0 à PD7
  • mettre les leds dans "l'ordre" des broches

Utilisation des 8 leds

Nous utiliserons dans nos programmes les types de variable dont la taille est explicitement donnée

Le débogage d'un programme est fondamental, il existe différentes façons de le faire. Ici nous nous contenterons d'utiliser des leds pour afficher des informations sur l'exécution du programme.

Principe :
#include <avr/io.h>
#include <util/delay.h>

void clignote()
{
    PORTD=0;
    for (uint8_t i=0;i<5;i++)
    {
         PORTD ^= 0xFF;
         _delay_ms(50);
    }
}

int main()
{
    // config des sorties
    DDRD = 0xFF; // les 8  broches des leds en sortie

    // qques variables
    uint8_t val1 = 0;
    int8_t val2 = -1;
    uint8_t val3 = 255;
    uint16_t val4 = 256;

    while(1)
    {
        PORTD = val1;
        _delay_ms(2000);
        clignote();
        PORTD = val2;
        _delay_ms(2000);
        clignote();
        PORTD = val3;
        _delay_ms(2000);
        clignote();
        PORTD = val4;
        _delay_ms(2000);
        for (int i=0;i<10;i++) clignote();
    }
}

Question.jpg Indiquer l'affichage réalisé par chacune des lignes PORTD=valx

Les nombres négatifs sont représentés pas la méthodes des compléments à deux : https://fr.wikipedia.org/wiki/Compl%C3%A9ment_%C3%A0_deux ]

Decodage d'un clavier

Câblage

Le tableau suivant résume la disposition physique du clavier avec la position physique sur le connecteur des lignes (L0 à L3) et colonnes (C0 à C2) en vue de dessus :

PC2 PC3 PC4 PC5 PB0 PB1 PB2
L0 L1 L2 L3 C0 C1 C2

ArduinoClavier.png

L/C C0 C1 C2
L0 1 2 3
L1 4 5 6
L2 7 8 9
L3 * 0 #

ClavierMatricielPrincipe.png

Todo.jpg Câbler sur une plaque à essais le clavier 12 touches que l'on vous donne. Les colonnes seront reliées sur le port B et les lignes sur le port C (cf indications ci dessus)

Remarque : On ne câblera aucune résistance de tirage, on utilisera les résistances internes au µcontrôleur.

Bluebg.png
Aidesmall.png
À propos de cette image

pullUp


2 étapes sont nécessaires pour activer une résistance de pullUp sur une broche :

  • Configurer la broche en entrée
    • pour une seule broche : DDRB &=~ (1<<PB1);
    • pour un groupe  : DDRB &=~ ((1<<PB1)|(1<<PB2)|(1<<PB3) ...);
  • Activer ensuite la/les résistance(s) de pullUp
    • pour une seule broche : PORTB |= (1<<PB1);
    • pour un groupe  : PORTB |= (1<<PB1)|(1<<PB2)|(1<<PB3) ...;

Principe de décodage

En utilisant un clavier matriciel, chaque touche n'est pas associé à une broche du µcontrôleur. Dans le cas présent, on passe de :

  • 12 entrées nécessaires si chaque touche était connectée directement
  • 7 broches nécessaires avec le clavier matriciel

L'intérêt évident est donc une réduction du nombre de broches nécessaires à l'utilisation du clavier.

L'inconvénient qui en résulte est la complexité relative du code pour trouver quelle touche est appuyée.

Le principe de décodage est symétrique entre lignes et colonnes. Détaillons donc le fonctionnement pour trouver sur quelle ligne une touche est appuyée :

  • On configure les broches colonnes en sortie.
  • On configure ces sorties à l'état 0
  • Les broches lignes sont en entrée
  • l'état des lignes dépend de l'appui sur un bouton :
    • si aucun bouton appuyé, les résistances de tirage donnent un état 1 sur les lignes
    • si on appui sur un bouton de la ligne0 (key 1/2/3), alors l'entrée ligne PC2 passe à l'état 0.
    • la valeur change suivant la ligne sur laquelle un bouton est appuyé
  • il suffit donc d'observer les 4 bits PC5..PC2 (que l'on note ici etat), et ainsi :
    • si PC5..PC2 = 1111 , pas de touche
    • si PC5..PC2 = 1110 , au moins une touche parmi 1/2/3
    • si PC5..PC2 = 1101 , au moins une touche parmi 4/5/6
    • ...

Indice de ligne

Question.jpg Compléter et vérifier le programme lecture_ligne() qui renvoie le numéro de ligne sur laquelle un bouton est appuyé

  • La validation se fera en utilisant des leds connectées sur le port C :
    • On utilisera les 8 leds du PORTD pour afficher le résultat
    • par ex : PORTD = lecture_ligne();
int8_t lecture_ligne()
{
  int8_t etatEntrees;
  DDRB  |= ( (1<<PB2) | ( (1<<PB1) | ( (1<<PB0) ) ;    // commençons par lister les sorties sur le port B
  DDRC  &=~ ( (1<<PC5) | (1<<PC4) |(1<<PC3) |(1<<PC2) )  ;    // puis les entrées sur le port C
  PORTB &=~ ( (1<<PB2) | ( (1<<PB1) | ( (1<<PB0) ) ;    // on place les sortie à l'état 0
  PORTC |= ( (1<<PC5) | (1<<PC4) |(1<<PC3) |(1<<PC2) ) ;    // on active les résistances de pull-up sur les entrées

  _delay_ms(1);        // un délai est nécessaire pour l'activation des pull-ups

  etatEntrees = PINC & 0b00111100; // on récupère ensuite l'état des entrées en cachant les bits non utiles
  switch (etatEntrees)
  {
         // PPPPPPPP
         // CCCCCCCC
         // ..5432..
     case 0b00111000 : return 0; // L0 (appui sur l'une des touches 1/2/3 => {{Rouge|entrée PC2 à 0}} )
     case 0b00110100 : return 1; // L1 => {{Rouge|entrée PC3 à 0}} 
     case  : return 2; // L2
     case  : return 3; // L3
     // si autre cas, pas de touches deux touches ou autre
     default : return -1;
  }
}

Indice de colonne

Question.jpg De la même façon, écrire et tester la fonction lecture_colonne() qui permettra d'obtenir le numéro de colonne sur laquelle un bouton est appuyé.


Touche appuyée

Nous souhaitons maintenant écrire une fonction qui renverra une valeur tel que décrit ci dessous :

const int8_t touches[4][3] = { // tableau de int8_t à 2 dimensions
                               { 1, 2, 3},
                               { 4, 5, 6},
                               { 7, 8, 9},
                               {10, 0,11}
                             };

int8_t getTouche();
La valeur retournée sera :
  • -1 si pas de touches (ou plusieurs) appuyées
  • la valeur correspondant à la touche pour les chiffres
  • 11 pour le #
  • 10 pour l' *

Question.jpg Écrire cette fonction en vous servant bien évidemment des 2 fonctions précédentes et pourquoi pas du tableau "touches" :

  • c'est un tableau de 4 lignes et 3 colonnes
  • la valeur dans la case [0,0] correspond à la valeur de la touche pour ligne=0 et colonne=0 => 1
  • la valeur dans la case [1,2] correspond à la valeur de la touche pour ligne=1 et colonne=2 => 6
int8_t getTouche()
{
   ....
}

réalisation d'un digicode

Nous allons utiliser la fonction getTouche() pour réaliser un programme de digicode.

contraintes

Commençons pour définir les contraintes :

  • On appuie sur la touche '*' pour démarrer la saisie du code => la led rouge s'allume brièvement
  • L'utilisateur doit alors saisir le code sur 4 chiffres
  • On valide le code par la touche '#'
  • Si le code est bon une led verte s'allume pendant 10s, sinon une led rouge clignote pendant 10s


codez !

Question.jpg Ecrire un programme répondant au cahier des charges

  • vous pouvez vous servir d'un LLM
  • il suffit de mémoriser les 6 dernières touches appuyées
    • déclarer un tableau
    • faire un décalage du tableau
    • rentrer la nouvelle valeur
    • comparer le tableau par rapport au code