Cours:InfoEmbarqueeThread
Sommaire
Kesako
Pile/Tas
zone mémoire | Taille | Usage | Performances |
---|---|---|---|
Stack (pile) | fixe | variables/paramètres ... des fonctions | selon mémoire |
Heap (tas) | sans objet | allocation dynamique | un peu moins rapide (gestion du tas, partage entre thread => doit être thread-safe) |
utilisation de la pile | utilisation du tas |
---|---|
int f1(int n)
{
int res;
res= ...n1;
return res;
}
int main()
{
int a,b;
b=f1(a);
}
|
int* memoireAllouee = nullptr; // On crée un pointeur sur int
memoireAllouee = malloc(sizeof(int)); // La fonction malloc inscrit dans notre pointeur l'adresse qui a été reservée.
Complexe * z1 = new Complexe(2,5);
|
Processus
Le lancement d'un programme sous Unix (norme posix ) entraîne la création d'un nouveau processus et donc l'allocation d'une zone mémoire avec plusieurs parties :
- le segment texte qui contient le programme exécutable
- le segment statique qui contient les objets globaux et statiques
- le segment de pile ( stack ) qui contient les données des fonctions
- le segment de tas ( heap ) qui contient les données allouées dynamiquement ( new / malloc )
Thread
un thread (fil d'instruction, processus léger,...) représente l'exécution d'en ensemble d'instructions.
un processus peut exécuter plusieurs threads. Les threads d'un même processus partagent une grande partie de leur mémoire (mis à part la pile)
L'ordonnanceur du système d'exploitation exécutera les différents threads qui pourront sembler s'exécuter en parallèle même sur un processeur à un seul coeur (core).
Attention à la durée de vie des objets dans la pile !!! => préférez le tas ?!
spécialisation de la classe QThread
worker.h | worker.cpp |
---|---|
class Worker : public QThread
{
Q_OBJECT
public:
explicit Worker(QObject *parent = nullptr);
void run() override;
};
|
Worker::Worker(QObject *parent)
: QThread{parent}
{
}
void Worker::run()
{
// les objets qui "vivent" dans le thread doivent être créés dans la méthode '''run'''
// exec(); // =>lance la boucle d'événement QT
}
|
Reprendre l'exercice d'observation par scrutation d'une entrée générée par un gbf
Mutex
Dans chaque thread on distingue :
- section non critique : peut être exécuté sans coordination avec les autres threads
- section critique : doit être exécuté par un thread unique => exclusion mutuelle
Un mutex (mutual exclusion) est une structure de données qui permet de contrôler l'accès à une ressource
Un mutex :
- est associé à une ressource
- peut être
- unlocked : la ressource est libre
- locked : la ressource est utilisée
Avant chaque accès à une section critique, il convient de :
- demander le verrouillage du mutex
- exécuter la section critique
- libérer le mutex
https://doc.qt.io/qt-5/qmutex.html
- on dispose 2 boutons sur l'interface graphique
- une led est connectée sur un gpio
- 2 tâches (thread) sont en attente
- l'une fera clignoter la led à 1Hz pendant 5s
- l'autre fera clignoter la led à 10Hz pendant 1s
- chaque bouton lancera l'une des tâches
- il ne devra y avoir qu'une tâche active à la fois
Semaphores
Les sémaphores permettent de résoudre le problème de la synchronisation entre thread, dont :
- exclusion mutuelle => se comporte comme un mutex
- problème des producteurs/consommateurs
https://doc.qt.io/qt-5/qsemaphore.html
Ressources
- https://fr.wikipedia.org/wiki/Thread_(informatique)
- https://doc.qt.io/qt-5/threads.html
- http://tvaira.free.fr/dev/qt/qt-multitache.pdf
- https://www.youtube.com/watch?v=xClAutDf6jE
- https://www.tchap.fr/la-pile-stack-et-le-tas-heap/
- https://cermics.enpc.fr/polys/info1/main/node74.html
- https://openclassrooms.com/fr/courses/19980-apprenez-a-programmer-en-c/16595-creez-des-variables-grace-a-lallocation-dynamique
- https://sites.uclouvain.be/SyllabusC/notes/Theorie/Threads/coordination.html