Cours:XR207 tp digicode

De troyesGEII
Révision datée du 12 avril 2015 à 17:47 par Bjacquot (discussion | contributions) ({{Bleu|Améliorations}})
Aller à : navigation, rechercher

Retour à la liste des Tps

Éléments de correction

ArduinoPinout.png

Vous allez développer un système de digicode architecturé autour d'un atmega328p (le µcontrôleur présent sur les cartes arduino).

Pour ce TP, nous utilisons une carte arduino sans le shieldinfo

Nous utiliserons les fonctions arduino dans ce TP, en essayant de les éviter au maximum afin d'écrire un code le plus réutilisable possible.


Informations lumineuses

Le digicode sera équipé de 2 voyants lumineux (rouge et vert).

On utilisera des résistances de 330Ω, et vous êtes libre de choisir un montage à anodes ou cathodes communes.

Todo.jpg Câbler sur une plaque à essais les leds sur les pin PC0 et PC1

Question.jpg Écrire une fonction pour éteindre ou allumer une led dont le prototype sera le suivant :

void setEtatLed(unsigned char numLed,unsigned char val);
Bluebg.png
Aidesmall.png
À propos de cette image

Astuce


Vous pourrez vous inspirer du programme suivant permettant de faire clignoter la led "13" de la carte Arduino Uno.

#define led PB5

void setup()
{
  DDRB |= 1 << led;
  
}

void loop()
{
  PORTB |= 1 << led;
  delay(100);
  PORTB &= ~(1 << led);
  delay(100);
}


Decodage d'un clavier

Câblage

Le tableau suivant résume la disposition physique du clavier avec la position physique sur le connecteur des lignes (L1 à L4) et colonnes (C1 à C3) en vue de dessus :

B0 B1 B2 B3 D4 D5 D6
L1 L2 L3 L4 C1 C2 C3

ArduinoClavier.png

L/C C1 C2 C3
L1 1 2 3
L2 4 5 6
L3 7 8 9
L4 * 0 #

Todo.jpg Câbler sur une plaque à essais le clavier 12 touches que l'on vous donne. Les colonnes seront reliées sur le port D et les lignes sur le port B (cf indications ci dessus)

Remarque : On ne câblera aucune résistance de tirage, on utilisera les résistances internes au µcontrôleur.

Indice de ligne

Question.jpg Ecrire et tester le programme lecture_ligne() qui renvoie le numéro de ligne sur laquelle un bouton est appuyé

  • Servez-vous bien évidemment du travail en TD !
  • Rappelons qu'il faut écrire un '1' sur une entrée, pour activer la résistance de pull-up associée
  • La validation se fera en utilisant la liaison série, à l'aide des fonctions arduino.
char lecture_ligne()
{
  char ch;
  DDRD ?= .... ;    // commençons par lister les sorties sur le port D
  DDRB ?= .... ;    // puis les entrées sur le port B
  PORTD?=..... ;    // on place les sortie à l'état 0
  PORTB?= .... ;    // on active les résistances de pull-up sur les entrées

  _delay_ms(1);        // un délais est nécessaire pour l'activation des pull-ups

  ch = PINB & 0x??; // on récupère ensuite l'état des entrées
  switch (ch)
  {
     case  : return 0; // aucune touche
     case  : return 1; // L1
     case  : return 2; // L2
     case  : return 3; // L3
     case  : return 4; // L4
     // si autre cas, deux touches ou autre
     default : return -1;
  }
}

Indice de colonne

Question.jpg De la même façon, écrire et tester la fonction lecture_colonne() qui permettra d'obtenir le numéro de colonne sur laquelle un bouton est appuyé.


Touche appuyée

Nous souhaitons maintenant écrire une fonction qui renverra une valeur tel que décrit ci dessous :

char touches[LIGNES][COLONNES] = { // tableau de char à 2 dimensions
  {1,,},
  {...},
  {...},
  {,,11}
};

char getTouche();
La valeur retournée sera :
  • -1 si pas de touches (ou plusieurs) appuyées
  • la valeur correspondant à la touche pour les chiffres
  • 11 pour le #
  • 10 pour l' *

Question.jpg Écrire cette fonction en vous servant bien évidemment des 2 fonctions précédentes et pourquoi pas du tableau "touches" complété.

Assemblons le tout

Nous allons utiliser les 2 fonctions toucheClavier() et setEtatLed() pour réaliser un programme de digicode.

Cahier des charges

Commençons pour définir les contraintes :

  • On commencera systématiquement par appuyer sur la touche "*" pour réinitialiser le digicode => les leds s'éteignent
  • L'utilisateur doit alors saisir le code sur 4 chiffres
  • Si le code est bon la led verte s'allume, sinon la led rouge clignote pendant 10s
  • Chaque appui sur une touche génère le son associé à la touche tel qu'indiqué dans le tableau de la partie Buzzer

Codez !!

Commencez par concevoir un algorigramme sur une feuille répondant au cahier des charges. Quelques étapes clés pour vous aider :

  • Attendre l'appui sur une touche
  • Si c'est un nombre, mettre la valeur dans un tableau et incrémenter l'indice (La prochaine touche sera le chiffre suivant du code)
  • Si c'est une "*" recommencer la saisie
  • Utiliser un tableau pour mémoriser le code, ex :
     const unsigned char code[4]={1,2,3,4};
    

Améliorations

Il serait intéressant de proposer une procédure de changement du code.


Buzzer

Objectif

Nous souhaitons utiliser le buzzer afin d'avoir une information sonore sur la touche du clavier appuyée.

Pour ce faire, chaque touche sera associée à une note de musique tel qu'indiqué dans le tableau suivant :

Touche 0 1 2 3 4 5 6 7 8 9 * #
Note Do Do# Ré# Mi Fa Fa# Sol Sol# La La# Si
Fréquence (Hz) 261,63 277,18 293,66 311,13 329,63 349,23 369,99 392 415,3 440 466,16 493,88
Période (µs) 3822 3608 3405 3214 3037 2863 2703 2551 2408 2273 2145 2025


Programmons

Question.jpg Vous utiliserez le programme réalisé au tp précédent, et notamment la fonction playnote(note,duree) pour jouer la note associée à chaque appui d'une touche

Complément au TP précédent : Mesure de temps d'exécution

Nous allons dans cette partie mesurer le temps d'exécution de certaines fonctions Arduino, et se rendre compte de l'une de leur principale limite.

Le temps écoulé sera mesuré à l'aide du Timer 2.

Le principe est le suivant :

  • Initialiser le timer
  • Répéter plusieurs fois l'instruction souhaitée
  • Observer la valeur du timer
  • Afficher cette valeur

Le timer 2 et ses registres (sans interruption)

Documentation simple du Timer 2 (8 bits)

Voici ci-contre, avec les conventions schématiques habituelles, le schéma de fonctionnement du timer 2.

On distingue ainsi le bit b0 du registre TIFR2 appelé TOV2 qui permet de détecter un débordement du timer. Pour plus de précisions, référez-vous au td sur le sujet !

Les habituels bits de configuration de la division se trouvent dans le registre TCCR2B et fonctionnent exactement comme pour les autres timers.

Le registre ASSR sert à choisir la source de l'horloge du timer 2. Pour nous, sauf mention contraire, ce sera toujours le quartz. Ce registre doit être configuré dans ce mode de fonctionnement par défaut.

Configuration des entrées/sorties

Nous souhaitons ici évaluer le temps mis par la fonction pinMode().

L'affichage du résultat sera tout simplement transmis sur la liaison série en utilisant les fonctions suivantes :

  • Serial.begin(debit)
  • Serial.print("valeur = ")
  • Serial.println(valeur,DEC)

Question.jpg Compléter le programme suivant en choisissant les bonnes valeurs pour évaluer le temps d'exécution de pinMode()

void setup()
{
  // Variables éventuelles

  // Initialisation du port série
  Serial.begin(9600);

  // Configuration du timer 2 : Attention, chaque bit doit être configuré à '0' ou '1'
  TCCR2A ??? (1<<WGM20); // mettre à 0
  TCCR2A ??? (1<<WGM21); // mettre à 0

  TCCR2B ??? (1<<WGM22); // mettre à 0
// choix du pré-diviseur :
  TCCR2B ??? (1<<CS22);
  TCCR2B ??? (1<<CS21);
  TCCR2B ??? (1<<CS20);
 
  // Initialisation du Timer : acquittement et valeur de départ
  TIFR2|=1<<TOV2;

}

void loop() {
  TCNT2=0; // timer2 mis à zéro

//********** debut du calcul dont on veut mesurer la durée 
  for (i=0;i<100;i++) // Le nombre d'itérations peut/doit être adapté !
  {
    // Fonction à évaluer : il est intéressant de répéter la fonction plusieurs fois
    pinMode(6,OUTPUT);
  }
//********* fin du calcul dont on veut mesurer la durée
  
  // Récupérer la valeur du timer et l'afficher seulement si le timer n'a pas débordé !!!

  // envoyer dans liaison série

  delay(500);
}


Attention ! Ne prenez pas ce que vous donne le timer pour argent comptant. Cette valeur doit avoir certaines propriétés :

  • ne pas être accompagnée d'un débordement de TCNT2. Vous seriez donc très inspiré d'écrire la valeur du flag TOV2 avec la liaison série en plus de la valeur de temps
  • augmenter lorsqu'on augmente le nombre de boucles exécutées sur l'instruction testée (autre manière de dire les choses, on double le temps si on double le nombre de boucles).

Ce travail nécessite dons un peu de soin et beaucoup d'essais pour trouver la bonne valeur de la division dans le pré-diviseur à choisir. Il peut être utile de mettre les tests dans loop() pour prendre son temps pour ouvrir la liaison série.


Question.jpg Comparer en déclarant une sortie directement en configurant le registre DDRx

Valeur de sortie

Si la fonction pinMode() est d'importance, sa durée d'exécution ne l'est pas forcément puisque la plupart du temps elle n'est exécutée qu'une seule fois.

Allons donc un peu plus loin dans la manipulation des ports en modifiant l'état d'une sortie (pin 6 arduino ou PD6).

Question.jpg Évaluer la durée d'exécution du code suivant :

//void setup()
//{
  pinMode(6,OUTPUT);
  for (char i=0;i<10;i++)
  {
    digitalWrite(6,0);
    digitalWrite(6,1);
  }
  
//}

//void loop()
//{
//}

Question.jpg Écrire le même code en utilisant directement les registres ad-hoc et comparer les vitesses d'exécution.