Cours:BUTiot TNS : Différence entre versions

De troyesGEII
Aller à : navigation, rechercher
(Lecture des données d'entrainement et apprentissage)
Ligne 26 : Ligne 26 :
 
tr.pop(); // Les deux dernières lignes sont à rejeter.
 
tr.pop(); // Les deux dernières lignes sont à rejeter.
 
tr.pop();
 
tr.pop();
</source<
+
</source>
  
 
=== Classification temps réel ===
 
=== Classification temps réel ===

Version du 5 février 2024 à 14:22

Retour à la page du cours

Classification multivariée temps réel

Le travail de cette étape va consister à

  • lire des données temps réel caractérisant l'état d'un réseau (latence et débit)
  • A partir d'un ensemble de données d'entrainement, mettre en place un classifieur permettant de détecter des anomalies sur ce réseau

Lecture des données d'entrainement et apprentissage

A faire :

  1. Créer une nouvelle "application" node.js
  2. Télécharger le zip des données, décompresser, placer les deux fichiers tr_server_data.csv et gt_server_data.csv dans le dossier de l'application.
  3. Lire ces données au format CSV
const fs = require("node:fs");

// training
let tr = fs.readFileSync("tr_server_data.csv", "utf-8")
    .split('\n') // découpe des lignes
    .map(l => l.split(',').map (v => parseFloat(v))); // découpe autour de la virgule et conv. en flottant
tr.pop(); // Les deux dernières lignes sont à rejeter.
tr.pop();

Classification temps réel

  • Données publiées sur le broker habituel :
    • data/latence en ms
    • data/debit en mb/s
    • data/gt = ground truth (vérité terrain) : est-ce une anomalie ?

A faire (en node.js) :

  1. lire ces données avec mqtt