Cours:Classif : Différence entre versions

De troyesGEII
Aller à : navigation, rechercher
(Prise d'images en c++)
(Prétraitements et mesure de descripteurs)
Ligne 134 : Ligne 134 :
 
==== Prétraitements et mesure de descripteurs ====
 
==== Prétraitements et mesure de descripteurs ====
  
 +
* Modification éventuelle de la zone de capture de la camera (option <code>
 
# Conversion en image niv. de gris (cf <code>assign_image()</code> dans Dlib)
 
# Conversion en image niv. de gris (cf <code>assign_image()</code> dans Dlib)
 
# Binarisation (cf <code>threshold_image</code> dans Dlib)
 
# Binarisation (cf <code>threshold_image</code> dans Dlib)

Version du 2 février 2024 à 08:24

TP Classification : détection d'objet en temps réel

Le travail de cette étape va consister à

  • analyser des images acquise en "temps réel" afin de détecter et identifier des objets
  • les objets seront
    • dans un premier temps des jetons de nain jaune
    • dans un second temps des briques lego.

Technos matérielles et logicielles

Vous utiliserez :

  • Une Rpi 4 que vous programmerez depuis vos postes linux (en cross-compilation)
  • Une camera PiCam Wide (grand angle)
  • la librairie CImg pour des traitements bas niveaux et affichages : https://cimg.eu/
  • la librairie Dlib pour des traitements simples et la reconnaissance : http://dlib.net/

Vous travaillerez dans un dossier dit "DE TRAVAIL", qui contiendra

  • les dossiers de vos projets QtCreator
  • le code des librairies Dlib et CImg téléchargées

(dans mes exemples, c'est /home/nicoli01/tests)

Prise d'images en terminal

  • Connecter (si cela n'est pas fait) la PiCam à la Rpi4
  • Tester la PiCam avec libcamera-hello (la capture doit s'afficher sur l'écran de la Rpi)
  • Tester l'acquisition d'image avec l'éxecutable libcamera-still
  • Explorer les options de cette application (libcamera-still -h), en particulier -n, --immediate, --width, --height et -o

Voir la page suivante pour le détails des options possibles : https://www.raspberrypi.com/documentation/computers/camera_software.html

Mise en place de la librairie Dlib

Attention, l'affichage des images avec Dlib et CImg sera déporté sur votre PC en X11 forwarding (option "Forward to local display" dans QtCreator ou "ssh -X" pour la connection depuis un terminal)

Cette fonction exploite la librairie Dlib :

  • Créer un projet dans QtCreator de type Non-Qt C++
  • Télécharger la librairie depuis http://dlib.net, la décompresser et placer son dossier dlib au même niveau que votre dossier de projet
  • Modifier votre fichier .pro de la façon suivante :
QMAKE_CXXFLAGS += -DDLIB_JPEG_SUPPORT
INCLUDEPATH += /home/nicoli01/tests # A REMPLACER PAR LE CHEMIN VERS VOTRE DOSSIER DE TRAVAIL
SOURCES += \
        /home/nicoli01/tests/dlib/all/source.cpp ## A REMPLACER DANS VOTRE CAS
LIBS += -ljpeg -lm -lX11 -lpthread
Ne pas oublier les deux lignes
target.path = /root
INSTALLS = target
  • Pour le contenu de votre main.cpp, vous pourrez vous inspirer de l'exemple suivant http://dlib.net/image_ex.cpp.html (en remplaçant éventuellement la ligne load_image(img, argv[1]); par load_image(img, "image.png"); pour lire une image que vous aurez acquis avec libcamera). Par exemple :
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <dlib/image_transforms.h>
#include <fstream>


using namespace std;
using namespace dlib;

//  ----------------------------------------------------------------------------

int main()
{
    try
    {
        array2d<rgb_pixel> img;

        load_image(img, "/Users/frederic/work/docu/enseignements/GEIIBUT3Classif/tests/im.jpg")

        image_window win;
        win.set_image(blurred_img);
        win.wait_until_closed();
    }
    catch (exception& e)
    {
        cout << "exception thrown: " << e.what() << endl;
    }
}

Mise en place de la librairie CImg

La librairie CImg est constituée d'un unique ficher CImg.h

  • Télécharger la librairie depuis https://cimg.eu/download.html, décompresser et copier le fichier CImg.h dans votre dossier de travail
  • Faire un nouveau projet non Qt, avec le main.cpp suivant pour tester
#include <iostream>

#include "/home/nicoli01/tests/testcimg/CImg.h" // A REMPLACER DANS VOTRE CAS

using namespace cimg_library;

using namespace std;

int main()
{
    cout << "Hello World!" << endl;

    CImg<unsigned char> image("/root/im.png"); // A REMPLACER DANS VOTRE CAS
    image.display("hello");
    return 0;
}
  • Votre fichier .pro est plus simple que pour Dlib, vous n'aurez qu'à rajouter la ligne suivante :
LIBS += -ljpeg -lm -lX11 -lpthread -pedantic -Dcimg_use_vt100 -Dcimg_display=1

Prise d'images en c++

Voici une fonction imcapture, qui renvoit une image RGB Dlib, que vous pourrez utiliser pour réaliser une acquisition d'image en c++

array2d<rgb_pixel> imcapture() {
	array2d<rgb_pixel> image;
    int pb = system("rm im.png 2>/dev/null; libcamera-still -n 1 --immediate --width 640 --height 480 -o im.png 2> /dev/null ");
	if (pb) {
		cout << "ERROR: no image acquisition" << endl;
		exit(1);
	} else {
		image = load("im.png");
	}
	return image;		
}
  • Utiliser cette fonction imcapture pour écrire un programme qui capture une image et l'affiche (avec Dlib)

Prétraitements et mesure de descripteurs

  • Modification éventuelle de la zone de capture de la camera (option
  1. Conversion en image niv. de gris (cf <code>assign_image() dans Dlib)
  2. Binarisation (cf threshold_image dans Dlib)
  3. (si plusieurs objets) Segmentation (cf segment_image() dans Dlib)

Si besoin, conversion d'une image Dlib en une image CImg :

CImg<unsigned char> image(img_gray.nc(), img_gray.nr());
cimg_forXY(image,x,y) {
  image(x,y) = 255-(unsigned char)bin_img[y][x];
}

Identification par KNN

  • A coder

Identification par SVM

  • En utilisant Dlib