RobotTondeuse : Différence entre versions
(→{{Bleu|Programmation}}) |
(→{{Bleu|Programmation}}) |
||
Ligne 132 : | Ligne 132 : | ||
#include <VL53L1X.h> | #include <VL53L1X.h> | ||
− | VL53L1X sensor; | + | VL53L1X sensor; |
− | VL53L1X sensor2; | + | VL53L1X sensor2; |
− | VL53L1X sensor3; | + | VL53L1X sensor3; |
− | MPU9250 IMU(Wire,0x68); | + | MPU9250 IMU(Wire,0x68); |
− | int status; | + | int status; |
void setupLaser(); | void setupLaser(); |
Version du 15 mars 2021 à 11:55
Sommaire
Présentation du projet
Objectif
Le projet consiste à fabriquer un robot tondeuse capable d'éviter les obstacles grâce à des capteurs de distance et faire tourner un moteur brushless désignant la lame de la tondeuse.
Tâches individuelles
- Arel RAKO :
* capteur VL53L1X - programmé et connecté le capteur
* moteur brushless - programmé, connecté, fait les soudures nécessaires pour le connecteur de la batterie
* interrupteur - programmé en PULL UP pour faire tourner le moteur au niveau haut et l'arrêter au niveau bas
* plaque pastillée - toutes les soudures de la plaque, qui seront détaillés un peu plus tard
Découpage fonctionnel
Travail à réaliser
Objectif
L'objectif sera bien évidemment de terminer le projet de sorte qu'il réponde au cahier des charges décrit précédemment.
Pour ce faire, il conviendra de :
- rechercher des solutions à partir du schéma fonctionnel fourni ( schéma électronique et composants )
- dimensionner les composants utilisés
- tester les différents blocs fonctionnels
- programmer les composants
- valider le fonctionnement
Choix des composants
- 3 capteurs de distance VL53L1X
- 1 arduino uno
- 1 shield avec drivers
- 1 gyroscope MPU9250
- 1 batterie 12.8V
- 1 abaisseur de tension LM2596
- 1 moteur brushless
- 1 interrupteur
- 2 moteurs MDP (moteurs des roues)
Explications
- les capteurs de distance
* connectés en I2C via les ports SCL et SDA de l'arduino * alimentés en 5V via le pin VIN, ils possèdent un régulateur qui transforme le 5V en 2.8V (sortie VDD) * placés au côté gauche, droit et au milieu du robot pour avoir un plus grand champ de vision * détails de fonctionnement:
- si le capteur à gauche détecte un obstacle à moins de 20cm, le robot tourne à droite - si le capteur à droite détecte un obstacle à moins de 20cm, le robot tourne à gauche - si le capteur du milieu détecte un obstacle à moins de 20cm, le robot s'arrête et fait demi-tour vers la droite
- le gyroscope
* connecté en I2C comme les capteurs de distance * alimenté en 5V comme les capteurs de distance * prend la valeur de 100 angles et fait leur moyenne pour plus de précision
- moteur brushless
* connecté à un pin PWM de l'arduino pour pouvoir le piloter * alimenté directement via la batterie car nécessite 12V * sur le rotor on a mis du scotch pour modéliser la lame
- interrupteur
* connecté en PULL-UP à un pin quelconque de l'arduino * alimenté en 5V * s'il envoie 1, le moteur brushless commence à tourner, s'il envoie 0, le moteur s'arrête Attention! Prévoir 5 secondes pour l'arrêt du moteur
- abaisseur de tension
* transforme le 12V de la batterie en 5V pour alimenter les capteurs
- plaque pastillée
* constituée de 6 parties: - le 12V pour alimenter l'arduino, on y branche aussi le connecteur AMASS du moteur brushless et l'abaisseur de tension - le 5V où sont connectés tous les capteurs, le gyroscope et l'interrupteur - SCL où est connecté le pin SCL des capteurs et du gyroscope au pin SCL de l'arduino - SDA où est connecté le pin SDA des capteurs et du gyroscope au pin SDA de l'arduino - masse du 12V - masse du 5V
- moteurs MDP
Programmation
- programmation des capteurs de distance
#include <Arduino.h> #include <Wire.h> #include <VL53L1X.h>
VL53L1X sensor; VL53L1X sensor2; VL53L1X sensor3; MPU9250 IMU(Wire,0x68);
int status;
void setupLaser(); void setupLaser(){
pinMode(2, OUTPUT); pinMode(3, OUTPUT); pinMode(4, OUTPUT); digitalWrite(2, LOW); digitalWrite(3, LOW); digitalWrite(4, LOW);
// initialise I2C delay(500); Wire.begin(); Wire.beginTransmission(0x29);
digitalWrite(3,HIGH); delay(150); sensor2.init(); Serial.println("01"); delay(100); sensor2.setAddress(0x33); Serial.println("02");
digitalWrite(4,HIGH); delay(150); sensor3.init(); Serial.println("03"); delay(100); sensor3.setAddress(0x35); Serial.println("04");
digitalWrite(2, HIGH); delay(150); Serial.println("09"); sensor.init(); Serial.println("10"); delay(100);
sensor.setDistanceMode(VL53L1X::Long); sensor.setMeasurementTimingBudget(50000); sensor.startContinuous(50); sensor.setTimeout(100);
sensor2.setDistanceMode(VL53L1X::Long); sensor2.setMeasurementTimingBudget(50000); sensor2.startContinuous(50); sensor2.setTimeout(100); sensor3.setDistanceMode(VL53L1X::Long); sensor3.setMeasurementTimingBudget(50000); sensor3.startContinuous(50); sensor3.setTimeout(100); delay(150); Serial.println("addresses set");
Serial.println ("I2C scanner. Scanning ..."); byte count = 0;
for (byte i = 1; i < 120; i++) {
Wire.beginTransmission (i); if (Wire.endTransmission () == 0) { Serial.print ("Found address: "); Serial.print (i, DEC); Serial.print (" (0x"); Serial.print (i, HEX); Serial.println (")"); count++; delay (1); } // end of good response } // end of for loop Serial.println ("Done."); Serial.print ("Found "); Serial.print (count, DEC); Serial.println (" device(s).");
}