COUPE ROBOTIQUE DES IUT : Différence entre versions
(→{{Rouge|Les deux caméras pixy}}) |
(→{{Rouge|Les deux caméras pixy}}) |
||
Ligne 84 : | Ligne 84 : | ||
====={{Rouge|Le Chassi en PLA}}===== | ====={{Rouge|Le Chassi en PLA}}===== | ||
====={{Rouge|Les deux caméras pixy}}===== | ====={{Rouge|Les deux caméras pixy}}===== | ||
+ | [[Fichier:Pixy à l'avant.jpg|vignette|Pixy à l'avant]] | ||
La caméra Pixy est une caméra intelligente laquelle, principalement, fait un traitement d'images des objets qu'on garde dans leur mémoire. Cette caméra nous donne différentes informations telles que: les coordonnées X, Y du centre de l'objet, la largeur ainsi que la hauteur du carreau autour l'objet, la quantité d'objets détectés et leurs couleurs parmi des autres données. ''Vous pouvez avoir plus d'information ici http://www.cmucam.org/projects/cmucam5/wiki/Arduino_API'' | La caméra Pixy est une caméra intelligente laquelle, principalement, fait un traitement d'images des objets qu'on garde dans leur mémoire. Cette caméra nous donne différentes informations telles que: les coordonnées X, Y du centre de l'objet, la largeur ainsi que la hauteur du carreau autour l'objet, la quantité d'objets détectés et leurs couleurs parmi des autres données. ''Vous pouvez avoir plus d'information ici http://www.cmucam.org/projects/cmucam5/wiki/Arduino_API'' | ||
Pour ce projet on utilise deux caméras : La caméra positionnée devant du robot sera qui détecte les balles, également les deux ballons à coté du terrain et celle qui est derrière sera capable de nous donner l’angle entre la direction du robot et l’arrière du terrain. Cette dernière donnée nous aidera à envoyer les balles vers la direction correcte! | Pour ce projet on utilise deux caméras : La caméra positionnée devant du robot sera qui détecte les balles, également les deux ballons à coté du terrain et celle qui est derrière sera capable de nous donner l’angle entre la direction du robot et l’arrière du terrain. Cette dernière donnée nous aidera à envoyer les balles vers la direction correcte! | ||
+ | |||
+ | [[Fichier:20180331 134152-min.jpg|vignette| Pixy à l'arrière]] | ||
Pour la première caméra, elle est monté à l’inverse(important pour la programmation puisque cela change l’orientation de l’axe X!) avec qu’un seul servomoteur qui contrôle le mouvement en l’axe Y. Ce mouvement est fait simplement, tout d’abord pour la détection des balles du sol et après pour la détection des ballons. | Pour la première caméra, elle est monté à l’inverse(important pour la programmation puisque cela change l’orientation de l’axe X!) avec qu’un seul servomoteur qui contrôle le mouvement en l’axe Y. Ce mouvement est fait simplement, tout d’abord pour la détection des balles du sol et après pour la détection des ballons. |
Version du 6 avril 2018 à 01:09
Sommaire
COUPE ROBOTIQUE 2018
Introduction
Pour la deuxième fois consécutive l'IUT de Troyes auxquelles nous appartenons va participé à la Coupe de France Robotique des Iut qui se déroule chaque années du Jeudi 9 au samedi 11 Juin lors du Festival de Robotique dans la ville de Cachan. L'année dernière le But de la Coupe étais de se déplacé d'un point A à un point B en évitant des obstacles. Cette année l'objectif est radicalement différent puisqu'il s'agit de joué au Tennis !
Nous avons donc développé un robot répondant à une problématique et à un cahier des charges bien précis fixé par les organisateurs de la coupe. Je vous invite à consulté le règlement afin de bien comprendre le principe de la coupe de cette année.
Vous pouvez retrouvé ce règlement ici
Cette année nous devons donc joué au tennis, voici donc un bref résumé du déroulement de la coupe :
-Deux robots se font face sur un terrain de Tennis de dimension 8*4 m.
-Chaque robot à sur sont terrains un certain nombre de balles de Tennis par terre.
-Le centre de la piste est délimité par une ligne.
-Il y a deux ballons de chaque côtés des deux camps leurs explosions déclenche un surplus de balle dans le camp adverse.
-Un match dure 90 secondes.
-A la fin des 90 secondes l'envoi d'un projectile autre qu'une balle dans le camps adverses ajoute une balle supplémentaires dans le terrain adverses.
Voici un aperçu du terrain:
Etudes
Il y a donc de nombreux But à atteindre, nous avons donc à l'aide d'un diagramme fonctionnelle décomposé tous ces Buts en Tâches à effectuées:
Cela nous à permis de définir les tâches que le robot doit effectué et les solutions techniques associées :
-Se déplacé => Deux moteurs commandés par un micro controleur Atmega 2560 via un pont en H l298n.
-Détecté les balles de Tennis => Première Caméra Pixy.
-Détecté la balise pour orienté le robot => Seconde Caméra Pixy.
-Détecté la proximité avec la balle et l'attrapée => Capteur de distance et Bras préhenseur.
-Propulsé la balle dans le camps adverse => Verrin.
-Atteindre les ballons situés en bordure du terrain => Bras rotatif.
-Faire éclaté les ballons en bordure du terrain => Arc électrique supporté par le bras rotatif nommé précédemment.
-Détecté les délimitations centrale du terrain => Capteur Cny70.
-Détecté la proximité avec les parois du terrain => Capteurs temps de vols.
Realisation
PREMIER PROTOTYPE
Fabrication
Nous avons choisi de concevoir un chassi qui pourrais accueillir tous nos composants, nous ne savions pas à ce moment la leurs dimensionnement.
Nous avons donc découpé en fonction du besoins des plaques de plastiques que nous avons assemblé.
Vous pouvez voir dans la photo précédente le robot complètement assemblé.
Ce robot ce déplace grâce à deux moteur fournis par les organisateurs de la coupe.
Ce sont deux moteurs Dunkermotoren G 42*25 vous pourrez retrouvé toutes leurs caractéristiques techniques ici
Ces moteurs et l'intégralités des dispositifs du robot sont alimentés par une batterie également définie par les organisateur de la coupe :
C'est une batterie 12 V avec une capacité de 7 Ah.
Déplacement:
Ces deux moteurs sont donc contrôlés par un pont en H l298n, vous pourrez trouvez toutes les informations utiles concernant ce composant ici
Ce composant serras placé sur la carte principale du robot, en effet au lieu de faire une carte pour la gestion des moteurs, une autre pour la gestion des caméras etc nous avons choisi de tous centralisé sur un seul shield d'une arduino mega.
Vous pouvez également distingué sur le Robot les deux caméras Pixys, une à l'avant, une autre à l'arrière pour la détection de la Balle, une description plus précise des Pixys serras faites plus en Avale en effet elles seront abordés dans la partie traitant du second prototype.
Vous pouvez voir également à l'avant du Robot le bras servant à attrapé la balle.
Ce bras à été imprimé à l'aide de l'imprimante 3D de l'Iut, il épouse parfaitement les dimensions de la balle, une version améliorée de ce bras à été fabriqué pour le deuxième prototype. Ce bras à été réalisé à l'aide d'une logiciel Freecad, ce logiciel libre est facile à prendre en mains c'est pour cela que nous l'avons préférés à Solydworks (même si les futures pièces seront surement faites à l'aide de ce dernier logiciel). Pour crée cette pièce nous avons crée une esquisse 2D puis à l'aide de protusion et de perçage nous obtenons une pièce en 3 dimensions. Il suffit ensuite de l'exporter sous un fichier "MESH" que l'imprimante 3D peux lire. Il existe ensuite plusieurs logiciels pouvant lire ce fichier, pour notre part nous disposions de deux imprimantes, les pièces les plus petites ont été réalisées à l'aide du logiciel Repetier Host et de l'imprimante 3D microDeta original et les pièces les plus grandes ont été réalisées grâce au logiciel Cura et à l'imprimante 3D Witbox
Bras préhenseur:
Les capteurs Cny70:
Ces capteurs à pour but de détecter le milieu du terrain en effet notre robot n'as pas à empiéter sur le terrain de l'adversaire, nous avons donc conçu des petites cartes avec le capteurs et ce qui est nécessaire à sont fonctionnement dessus, seul bé mole nous allons devoirs inclinés les Cny en effet notre robot ne doit pas dépasser la ligne, nous devons donc la détecté à l'avance. Encore une fois si vous avez besoins de précision concernant ce photo transistor suivez ce lien : ici
Le générateur d'arc électriques
Il est invisible ici car il est situé à l'intérieur du robot, ce petit générateur produit des petits arcs électriques en ionisant l'air, ce petit générateur est commandé par un transistor type Mosfet type N. Nous avons mesuré qu'il consomme au maximum de sont fonctionnement jusqu’à 2 Ampère, en effet plus l'arc électrique est grand plus la consommation de courant électrique est grande. Après avoir effectué plusieurs tests nous en avons conclus que cette arc électrique étais suffisant pour faire éclater un ballon.
Le shield arduino mega
Ce
SECOND PROTOTYPE
Le Chassi en PLA
Les deux caméras pixy
La caméra Pixy est une caméra intelligente laquelle, principalement, fait un traitement d'images des objets qu'on garde dans leur mémoire. Cette caméra nous donne différentes informations telles que: les coordonnées X, Y du centre de l'objet, la largeur ainsi que la hauteur du carreau autour l'objet, la quantité d'objets détectés et leurs couleurs parmi des autres données. Vous pouvez avoir plus d'information ici http://www.cmucam.org/projects/cmucam5/wiki/Arduino_API
Pour ce projet on utilise deux caméras : La caméra positionnée devant du robot sera qui détecte les balles, également les deux ballons à coté du terrain et celle qui est derrière sera capable de nous donner l’angle entre la direction du robot et l’arrière du terrain. Cette dernière donnée nous aidera à envoyer les balles vers la direction correcte!
Pour la première caméra, elle est monté à l’inverse(important pour la programmation puisque cela change l’orientation de l’axe X!) avec qu’un seul servomoteur qui contrôle le mouvement en l’axe Y. Ce mouvement est fait simplement, tout d’abord pour la détection des balles du sol et après pour la détection des ballons. Pourtant, la deuxième est montée sur deux servomoteurs qui contrôle le mouvement dans les deux axes. Il se trouve que si le robot est près de la balise on risque de la perdre, c’est pour cela qu’on utilise le mouvement en Y.
La carte principale
Liens vers la compétition de l'année passée : RobotGEII 16-17