TNS Traitement Numérique du Signal

frederic.nicolier@univ-reims.fr

URCA - IUT Troyes - GEII

PLAN GÉNÉRAL

1. SIGNAUX NUMÉRIQUES

2. Systèmes numériques

3. PRINCIPALES PROPRIÉTÉS DE LA TZ

4. FILTRES NUMÉRIQUES

5. QUELQUES FILTRES RIF

6. Synthèse de filtres numériques

1.1 APPLICATIONS :

Un signal est le support physique d'une information (ex : signaux sonores, visuels)

- signaux continus (analogiques),
- discrets (échantillonnés sampled),
- numériques (échantillonnés et quantifiés) : digital signal

1.2 SIGNAUX NUMÉRIQUES :

FIGURE - numérisation

FIGURE – numérisation

QUESTION 1¹ - Par rapport à un signal analogique, un signal numérique est :

- 1. plus fidèle à l'information initiale
- 2. plus robuste au bruit
- 3. plus durable dans le temps

1. SIGNAUX NUMÉRIQUES

FIGURE – Signal bruité

1.3 NOTATION MATHÉMATIQUE DES SIGNAUX DISCRETS :

Un signal discret est une **liste ordonnée** de valeurs réelles ou complexes. En mathématique, on le représente donc par **une suite numérique** (DÉFINITION) Une **suite numérique** $(u_n)_{n \in \mathbb{N}}$ est une application de \mathbb{N} sur \mathbb{R} (ou \mathbb{C}). u_n est le **terme général de la suite**.

Le terme général sera noté u_n ou u(n).

1.4 SIGNAUX ÉLÉMENTAIRES :

Échelon unité

1.4 SIGNAUX ÉLÉMENTAIRES :

Signal exponentiel

$$x_n = a^n$$

(suite géométrique)

1.4 SIGNAUX ÉLÉMENTAIRES :

impulsion unité

$$\delta_n = \begin{cases} 1 & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases}$$

Considérons l'échelon et l'impulsion unité :

Cherchons à construire u à partir de δ .

1.5 COMBINAISONS DE SIGNAUX ÉLÉMENTAIRES : Soit δ l'impulsion unité, voici le signal δ_1

QUESTION 2² - L'expression mathématique de δ_1 est

1. $\delta(n-1)$ 2. $\delta(1-n)$ 3. $\delta(n+1)$ 4. $\delta(1+n)$ 2. http://lc.cx/PDu

On peut donc écrire

$$u(n) = \delta(n) + \delta(n-1) + \delta(n-2) + \dots$$

donc

$$u(n) = \sum_{k} \delta(n-k)$$

De même, le signal exponentiel $x(n) = a^n$ peut s'écrire

$$x(n) = \delta(n) + a\delta(n-1) + a^2\delta(n-2) + \dots$$

soit

$$x(n) = \sum_{k} a^{k} \delta(n-k)$$

En généralisant, tout signal discret peut s'écrire comme une somme infinie pondérée d'impulsions unités.

$$x(n) = a_0\delta(n) + a_1\delta(n-1) + a_2\delta(n-2) + \dots$$

ou encore

$$x(n) = \sum_{k} a_k \delta(n-k)$$

(*Retenez bien cette équation !*)

Revenons sur l'échelon unité :

$$u_n = \begin{cases} 1 & \text{si } n \ge 0\\ 0 & \text{sinon} \end{cases}$$

que l'on peut également écrire comme :

$$u_n = U(nT_e)$$

avec

$$U(t) = \begin{cases} 1 & \text{si } t \ge 0\\ 0 & \text{sinon} \end{cases}$$

 \Rightarrow *u* est la version **échantillonnée** de *U*.

1.6 ÉCHANTILLONNAGE :

FIGURE – Signal échantillonné

FIGURE – Signal mal échantillonné

Comment choisir la fréquence d'échantillonnage?

Observons le contenu fréquentiel d'un signal qui ne comporte aucunes fréquences supérieures à f_m

Si l'on échantillonne à une fréquence f_s , le contenu fréquentiel est répété à chaque f_s .

QUESTION 3³ - Pour que l'on puisse obtenir un signal échantillonné correct, la fréquence d'échantillonnage f_s doit vérifier :

1. $f_s > 2f_m$ 2. $f_s < 2f_m$ 3. $f_s > \frac{1}{2}f_m$ 4. $f_s < \frac{1}{2}f_m$

Lorsque $f_s < 2f_m$, les contenus fréquentiels se recouvrent.

FIGURE - Spectre d'un signal échantillonné

(THÉORÈME D'ÉCHANTILLONNAGE DE NYQUIST-SHANNON) La représentation discrète d'un signal par des échantillons régulièrement espacés exige une fréquence d'échantillonnage supérieure au double de la fréquence maximale présente dans ce signal

FIGURE - Claude Shannon (1916-2001)

Également inventeur de la machine ultime⁴ 4. http://www.instructables.com/id/The-Most-Useless-Machine/

PLAN

SIGNAUX NUMÉRIQUES

2. Systèmes numériques

PRINCIPALES PROPRIÉTÉS DE LA TZ
FILTRES NUMÉRIQUES

IELQUES FILTRES RII

FIGURE – système discret simple

 $y_k = x_k + a y_{k-1}$. (0)

C'est une équation aux différences (simple)
Cherchons à exprimer explicitement (y_k) en fonction de (x_k)

On a donc

$$y_k = \sum_{n = -\infty}^k a^{k-n} x_n.$$

Reformulons la sortie en posant

$$h_k = egin{cases} 0 & \mathrm{si}\,k < 0 \ a^k & \mathrm{si}\,k \ge 0 \end{cases}$$

On a donc

$$y_k = \sum_{n=-\infty}^{\infty} h_{k-n} x_n$$

y est le résultat du produit de convolution entre h et x.

h est la réponse impulsionnelle du système *S* : système linéaire et invariant par translation

h est suffisant pour entièrement caractériser le système S :

 $h = S(\delta)$

$$x(k) = \sum_{n} a_{n} \delta(k - n)$$
$$y(k) = \sum_{n} x(n)h(k - n)$$

n

2.1 ÉTUDE D'UN SYSTÈME DISCRET SIMPLE : (h_n) est donc la réponse impulsionnelle du système.

► A partir de

$$y(k) = \sum_{n} x(n)h(k-n)$$

avec

$$h_k = egin{cases} 0 & \mathrm{si}\,k < 0 \ a^k & \mathrm{si}\,k \ge 0 \end{cases}$$

 \Rightarrow Cherchons la réponse à une entrée

$$x_k = z^k$$

où z est un nombre complexe fixé.

Montrons alors que

$$y_k = \frac{z}{z-a} x_k.$$

$$H(z) = \frac{z}{z-a}$$

est la fonction de transfert du filtre.

- C'est une fonction de la variable z, définie dans le domaine |z| > |a|.
- Un calcul analogue au précédent nous donne H en fonction de h :

$$H(z) = \sum_{n = -\infty}^{\infty} h_n z^{-n}$$

H(z) est donc la **transformée en** z de (h_n) , avec

$$\mathbf{Z}[f_n] = \sum_{n=-\infty}^{\infty} f_n z^{-n}.$$

quelles sont ses propriétés?

quelles sont ses conditions d'existence et de convergence?

 \Rightarrow suites et séries numériques et de fonctions

1. SYSTÈMES NUMÉRIQUES

3. PRINCIPALES PROPRIÉTÉS DE LA TZ
3.1 DÉFINITION :

(DÉFINITION) La **transformée en** z d'un signal discret (x_n) est

$$X(z) = Z[f_n] = \sum_{n=-\infty}^{\infty} f_n z^{-n}$$

où z est une variable complexe.

- ► La TZ peut-être considérée comme une généralisation de la transformée de Fourier (poser $z = e^{i\omega}$)
- La TZ constitue l'outil privilégié pour l'étude des système discrets.
- Elle joue un rôle équivalent à la transformée de Laplace

Par exemple, la TZ permet de représenter un signal possédant une infinité d'échantillons par un ensemble fini de nombres. 3. PRINCIPALES PROPRIÉTÉS DE LA TZ

3.2 DOMAINE DE CONVERGENCE :

La TZ n'a de sens que si l'on précise le domaine des valeurs de z pour lesquelles la série existe.

Nous montrerons (en Ma3) que le **domaine de convergence** de X(z) est **un anneau du plan complexe** : une TZ converge si

$$R_{x-} < |z| < R_{x+}$$

FIGURE – Domaine de convergence d'une TZ

3. PRINCIPALES PROPRIÉTÉS DE LA TZ

3.3 SIGNAUX ÉLEMENTAIRES :

TZ de l'impulsion unité

$$Z[\delta_n] = 1$$

TZ de l'échelon unité

$$Z[u_n] = \frac{1}{1 - z^{-1}}$$

TZ du signal exponentiel

$$Z[a^n u_n] = \frac{z}{z-a}$$

$$Z[nu_n] = \frac{z}{(z-1)^2}$$

3.4 PROPRIÉTÉS :

(LINÉARITÉ) Soit $s_n = ax_n + by_n$ alors

S(z) = aX(z) + bY(z).

► Quel est le domaine de convergence ? (réponse en Ma3) (SÉQUENCE RETARDÉE) Si $y_n = x_{n-n_0}$ alors $Y(z) = z^{-n_0}X(z).$

► En particulier, si $y_n = x_{n-1}$, $Y(z) = z^{-1}X(z)$. (SÉQUENCE AVANCÉE) Si $y_n = x_(n + n_0)$ alors

$$Y(z) = z^{n_0} \left[X(z) - \sum_{p=0}^{n_0-1} x(p) z^{-p} \right]$$

►
$$Z[x(n+1)] = z(X(z) - x(0)),$$

► $Z(x(n+2)] = z^2(X(z) - x(0) - z^{-1}x(1))$

3.4 PROPRIÉTÉS :

(DÉRIVÉE) La dérivée d'une TZ multipliée par -z est la TZ du signal multiplié par n:

$$-z\frac{\mathrm{d}X(z)}{\mathrm{d}z} = \sum_{n=-\infty}^{\infty} nx_n z^{-n} = Z[nx_n]$$

(CONVOLUTION) La convolution discrète étant définie par

$$x_n * y_n = \sum_{k=-\infty}^{\infty} x_{n-k} y_n,$$

la TZ est

 $Z[x_n * y_n] = X(z)Y(z).$

3.5 TZ INVERSE :

À partir de la TZ X(z) d'un signal, l'original x_n peut être retrouvé de plusieurs manières :

- en développant X(z) en une série (puissance par exemple)
- en utilisant le théorème des résidus pour calculer

$$x_n = \frac{1}{2i\pi} \int_{\Gamma} X(z) z^{n-1} \mathrm{d}z$$

où Γ est un lacet entourant l'origine, situé dans la couronne de convergence et orienté dans le sens positif.

par identification des termes (avec éventuellement un formulaire).

Exemple :

$$Z^{-1}\left[\frac{1}{6-5z^{-1}+z^{-2}}\right]$$

(1)

3.5 TZ INVERSE :

Le théorème des résidus indique que l'intégrale sur un contour fermé C d'une fonction complexe holomorphe F(z) rationnelle vaut

$$\int_{\mathbb{C}} F(z) \mathrm{d}z = 2i\pi \sum_{p_i \in \mathbb{C}} \mathrm{R\acute{e}sidu}(p_i)$$

où p_i est un pôle de F(z).

(Fonction holomorphe = fonction à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe.) si p_i est un pôle simple : Résidu $(p_i) = \lim_{z \to p_i} (z - p_i)F(z)$

• Exemple : calcul de $Z^{-1}[\frac{1}{1+az^{-1}}]$.

3.6 RÉSOLUTION D'ÉQUATIONS AUX DIFFÉRENCES :

- Les systèmes discrets sont souvent représentés par une équation aux différences.
- Cette équation donne la sortie en fonction des échantillons présents et passés du signal d'entrée, ainsi que les échantillons passés de la sortie (« mémoire »). Par exemple

$$y(n) = 2y(n-1) + 3x(n) - 2x(n-2).$$
 (2)

Dans le cas général, on peut écrire :

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{m=0}^{M} b_m x(n-m).$$
 (3)

3.6 RÉSOLUTION D'ÉQUATIONS AUX DIFFÉRENCES :

Donc, en appliquant la TZ à gauche et à droite :

$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{m=0}^{M} b_m z^{-m} X(z).$$
(4)

La résolution de l'équation aux différences, c'est-à-dire l'obtention de y(n), est donc possible en :

obtenir la TZ de l'équation aux différences,

- manipuler la transformée pour obtenir Y(z),
- appliquer la TZ inverse pour obtenir y(n).

Exemple : résoudre $x_{n+1} = x_n + 2$ avec $x_0 = 3$.

PLAN

Systèmes numériques

PRINCIPALES PROPRIÉTÉS DE LA TZ

4. FILTRES NUMÉRIQUES

4.1 FILTRES (GÉNÉRALITÉS) :

Il existe deux formes élémentaires de filtres numériques, selon leur réponse impulsionnelle :

- Réponse Impulsionnelle Finie (RIF) Finite Impulse Response (FIR)
- Réponse Impulsionnelle Infinie (RII) Infinite Impulse Response (IIR)

4.1 FILTRES (GÉNÉRALITÉS) : EXEMPLE

Considérons le filtre décrit par l'équation aux différences suivante :

$$y(n) = 0,25x(n) + 0,5x(n-1) + 0,25x(n-2).$$
 (5)

Sa transformée en z est

$$H(z) = 0,25 + 0,5z^{-1} + 0,25z^{-2}$$
(6)

On peut donc aisément donner un schéma-bloc équivalent à l'équation aux différences.

4.1 FILTRES (GÉNÉRALITÉS) :

La sortie y(n) d'un filtre RIF ne dépend que d'un nombre M fini d'entrées x(n - m). Il s'agit d'un filtre non-récursif. Son équation aux différence est de la forme

$$y(n) = \sum_{m=0}^{M} b_m x(n-m).$$

Sa TZ est de la forme

$$H(z) = \sum_{m=0}^{M} b_m z^{-m}$$

Il est toujours possible de représenter un tel filtre par un schéma-bloc.

(7)

(8)

4.1 FILTRES (GÉNÉRALITÉS) : EXEMPLE

Considérons le filtre décrit par l'équation aux différences suivante :

$$y(n) = x(n) + a_1 y(n-1) + a_2 y(n-2).$$
(9)

Sa transformée en z est

$$H(z) = \frac{1}{1 - a_1 z^{-1} - a_2 z^{-2}}.$$
 (10)

On peut donc aisément donner un schéma-bloc équivalent à l'équation aux différences.

4.1 FILTRES (GÉNÉRALITÉS) :

La sortie y(k) d'un filtre RII dépend

• d'un nombre *M* fini d'entrées x(k - m).

► et d'un nombre *N* fini de sorties retardées y(k - n). Son équation aux différence est de la forme

$$\sum_{n=0}^{N} a_n y(k-n) = \sum_{m=0}^{M} b_m x(k-m).$$
(11)

Sa TZ est de la forme

$$H(z) = \frac{\sum_{m=0}^{M} b_m z^{-m}}{\sum_{n=0}^{N} a_n z^{-n}}$$
(12)

Il est toujours possible de représenter un tel filtre par un schéma-bloc.

4.1 FILTRES (GÉNÉRALITÉS) : FILTRE RIF

- (+) Le délai de réponse est le même pour toutes les fréquences. La phase d'un filtre non-récursif est linéaire avec la fréquence. On dit que c'est un filtre linéaire.
 ⇒ Le signal n'est pas dispersé par le filtrage.
- (+) Les filtres non-récursifs sont stables. Leur réponse est finie :

$$|x_n| < \infty \Rightarrow |h * x_n| < \infty \tag{13}$$

(+) Il existe des méthodes simples pour les synthétiser (*ie* les concevoir).

4.1 FILTRES (GÉNÉRALITÉS) : FILTRE RIF

- (-) Cher en réalisation. Beaucoup d'amplificateurs et de retards : beaucoup de calculs.
- (-) Le retard entre l'entrée et la sortie correspond à la longueur du filtre (nb de coefficients). Ce retard peut être long.

4.1 FILTRES (GÉNÉRALITÉS) : FILTRE RII

- (+) Faible coût de calcul.
- (+) Faible retard. C'est un très bon outil en communication.
- (-) Non-linéarité en phase.
- (-) Instabilité numérique.

4.2 FONCTIONS DE TRANSFERT :

Lire Gargour p.129-130 et p.139 (définitions et causalité).

4.3 RÉPONSES FRÉQUENTIELLES :

Lire Gargour

- p.161-162 (module, déphasage, retard de groupe),
- p.169-170 (réponse fréq. facteur du premier ordre),
- ▶ p.177-178 (réponse fréq. facteur du second ordre) et
- ▶ p.180-183 (fonctions de transfert du second ordre).

4.4 STABILITÉ DES FILTRES NUMÉRIQUES :

Lire Gargour

- p.140-141 et p.145 (règles de stabilité) et
- ▶ p.146-147 (critère et tableau de Jury).

4.5 REPRÉSENTATION PAR PÔLES ET ZÉROS :

Considérons $H(z) = Z[h_n]$.

- Les pôles de H(z) sont les valeurs de z pour lequelles H(z) tend vers l'infini.
- Les zéros de H(z) sont les valeurs de z pour lesquelles H(z) est nul.
- Les pôles et les zéros complexes de *H*(*z*) sont de la forme *α* ± *iβ*.

4.5 REPRÉSENTATION PAR PÔLES ET ZÉROS :

Si X(z) possède M zéros z_m et N pôles p_n , on peut la mettre sous la forme :

$$H(z) = \frac{X(z)}{Y(z)}$$

= $\frac{b_0 + b_1 z^{-1} + \ldots + b_M z^{-M}}{1 + a_1 z^{-1} + \ldots + a_N z^{-N}}$
= $A \frac{\prod_{m=1}^M (z - z_m)}{\prod_{n=1}^N (z - p_n)}$

On peut toujours écrire une TZ sous cette forme, et donc représenter le signal par des listes de pôles et de zéros.
 Exemple :

$$H(z) = Z(a^n u_n) = \frac{z}{z-a}$$

4.6 STRUCTURES DE RÉALISATION :

Lire Gargour

- p.207-208 (structures de réalisation) et
- ▶ p.212-215 (structures canoniques).

4.6 STRUCTURES DE RÉALISATION :

Il est possible de considérer la fonction de transfert

$$H(z) = \frac{\sum_{m=0}^{M} b_m z^{-m}}{\sum_{n=0}^{N} a_n z^{-n}}$$

comme la mise en série de deux systèmes :

$$H(z) = H_1(z)H_2(z).$$
 (15)

(14)

4.6 STRUCTURES DE RÉALISATION :

Soit w(k) le signal à la sortie de H_1 . On montre que

$$w(k) = \frac{1}{a_0} x(k) - \sum_{n=1}^{N} \frac{a_N}{a_0} w(k-n)$$
(16)

Comme w(k) est également le signal d'entrée de H_2 , on a également

$$y(k) = \sum_{m=0}^{M} b_m w(k-m).$$
 (17)

En donnant les schéma-bloc de ces deux filtres, on observe que ces deux structures ont un certain nombre d'éléments de retard (z^{-1}) qui peuvent être mis en commun. La structure canonique d'un filtre est la réalisation qui possède un nombre minimum de retards.

PLAN

SYSTÈMES NUMÉRIQUES PRENCIPALES PROPRIÉTÉS DE LA TZ

5. QUELQUES FILTRES RIF

La dérivée d'une fonction s(t) est définie par

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \lim_{h \to 0^+} \frac{s(t+h) - s(t)}{h}$$

▶ Pour un signal numérique s(n) la limite n'existe pas. ⇒ On ne peut calculer la dérivée d'un signal numérique. (18)

Mais on peut calculer des différences. Par exemple

$$(n = 1) \ \frac{\Delta s(n)}{\Delta n} = s(n) - s(n-1)$$
(19)
$$(n = 2) \ \frac{\Delta s(n)}{\Delta n} = \frac{s(n) - s(n-2)}{2}$$
(20)

Ces deux différences correspondent à des filtres :

$$s(n) - s(n-1) \rightsquigarrow s * h_n \text{ avec } h = (-1,1)$$
(21)
$$s(n) - s(n-2) \rightsquigarrow s * h_n \text{ avec } h = (-\frac{1}{2}, 0, \frac{1}{2})$$
(22)

► Comment se comportent ces filtres?

En calculant leur fonctions de transfert H(w).
 Montrons que

$$H_1(\omega) = |2\sin(\omega/2)|$$
(23)
et $H_2(\omega) = |\sin(w)|.$ (24)

► On rappelle (cf Ma3) que l'opération de dérivation se traduit dans le domaine fréquentiel par une multiplication par $-i\omega$. La fonction de transfert est donc :

$$D(\omega) = |w|. \tag{25}$$

FIGURE – Comparaison des dérivations

► La dérivation "amplifie" les hautes-fréquences

Nous allons nous intéresser aux filtres binomiaux, dont les coefficients sont ceux du polynôme :

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k}$$
(26)
avec $\binom{n}{k} C_{n}^{k} = \frac{n!}{k!(n-k)!}$ (27)

► les coeffcients $\binom{n}{k}$ sont obtenus rapidement par le triangle de Pascal :

$$\begin{array}{r}1\\1&1\\1&2&1\\1&3&3&1\\1&4&6&4&1\\1&5&10&10&5&1\end{array}$$

► Ces coefficients définissent des filtres aux propriétés remarquables.

$b_1 = (1;1)$	(28)
$b_2 = (1;2;1)$	(29)
$b_3 = (1;3;3;1)$	(30)

 Ils produisent une réponse analogue à celle du filtre Gaussien, discrète et finie. (mais ce n'est pas une gaussienne).
 Leur fonction de transfert peut être rapidement obtenue

. . . = . . .

• Étude du filtre $b_1 = (1;1)$. Montrons que

$$|B_1(\omega)| = 2\cos(\omega/2). \tag{31}$$

▶ Étude du filtre $b_2 = (1;2;1)$. Montrons que

$$|B_2(\omega)| = \left[2\cos(\frac{\omega}{2})
ight]^2$$

(32)

On montre de la même façon que

$$|B_4(\omega)| = \left[2\cos(\frac{\omega}{2})\right]^4.$$
 (33)

Ces filtres réduisent les hautes-fréquences. Ils correspondent à une opération de lissage.
Il convient de les normaliser, pour obtenir un gain unitaire.
5. QUELQUES FILTRES RIF

5.3 LISSAGE ET DÉRIVATION :

► Il est aisé de vérifier que

$$b_{2} = b_{1} * b_{1}$$
(34)

$$b_{3} = b_{1} * b_{1} * b_{1} = b_{2} * b_{1}$$
(35)
... = ... (36)

$$b_{n} = b_{n-1} * b_{1}.$$
(37)

$$h_2 = h_1 * b_1. (38)$$

Ce qui permet de mieux comprendre la fonction de transfert $H_2(\omega)$.

6.1 RAPPELS SUR LES FILTRES ANALOGIQUES :

Lire Gargour

- ▶ p.241-244 (introduction et passe-bas de Butterworth),
- ▶ p.248-251 (passe-bas de Tchebycheff),
- p.255-257 (transformation de passe-bas),
- p.264-266 (méthode de la réponse impulsionnelle),
- ▶ p.273-278 (méthode de la transformation bilinéaire) et
- ▶ p.304-305 (transformation de passe-bas de la domaine *z*).

6.1 RAPPELS SUR LES FILTRES ANALOGIQUES : PASSE-BAS DE BUTTERWORTH

Le module de la réponse fréquentielle de la fonction de transfert T(s) du PB de Butterworth d'ordre n et de pulsation de coupure Ω_c est

$$|T(j\omega)| = rac{1}{\sqrt{1 + \left(rac{\Omega}{\Omega_c}
ight)^{2n}}}$$

(39)

6.1 RAPPELS SUR LES FILTRES ANALOGIQUES : PASSE-BAS DE BUTTERWORTH

FIGURE - Module de quelques fx de transfert passe-bas Butterworth

6.1 Rappels sur les filtres analogiques : Passe-bas de Butterworth

n	Tableau T7.2.1 Fonctions de transfert passe-bas de Butterworth normalisées. Pulsation de coupure: 1 rad/s.
1	$\frac{1}{S+1}$
2	$\frac{1}{s^2 + 1.41428 + 1}$
3	$\frac{1}{s^3 + 2s^2 + 2s + 1}$
4	$\frac{1}{\overline{s^4 + 2.61318^3 + 3.41428^2 + 2.61318 + 1}}$
5	$\frac{1}{5^5 + 3.23618^4 + 5.23618^3 + 5.23618^2 + 3.23618 + 1}$
6	$\frac{1}{5^6 + 3.86375^5 + 7.46415^4 + 9.14165^3 + 7.46415^2 + 3.86375 + 1}$

6.1 RAPPELS SUR LES FILTRES ANALOGIQUES : PASSE-BAS DE TCHEBYCHEFF

Le module de la réponse fréquentielle de la fonction de transfert $T_C(s)$ du PB de Tchebycheff d'ordre n et de pulsation de coupure Ω_c est

$$|T_C(j\Omega)| = rac{1}{\sqrt{1 + \epsilon^2 C_n^2 \left(rac{\Omega}{\Omega_p}
ight)}}$$

 $\epsilon \in [0, 1]$ est le coefficient d'ondulation, C_n la fonction de Tchebycheff (oscillante) et Ω_p la pulsation de fin de bande d'ondulation.

(40)

6.1 RAPPELS SUR LES FILTRES ANALOGIQUES : PASSE-BAS DE TCHEBYCHEFF

FIGURE – Module de quelques fx de transfert passe-bas Tchebycheff

6.1 RAPPELS SUR LES FILTRES ANALOGIQUES : PASSE-BAS DE TCHEBYCHEFF

n	Tableau T7.2.2Fonctions de transfert passe-bas de Tchebycheff normalisées. Bande d'ondulation: $0 \le \Omega \le 1$ rad/s. Ondulation de 1 dB ($\epsilon = 0.5088$).
1	. <u>1.9652</u> <u>8+1.9652</u>
2	$\frac{0.9826}{8^2 + 1.09778 + 1.1025}$
3	$\frac{0.4913}{5^3 + 0.98835^2 + 1.23845 + 0.4913}$
4	$\frac{0.2456}{5^4 + 0.95288^3 + 1.45398^2 + 0.74268 + 0.2756}$
5	$\frac{0.1228}{8^5 + 0.93688^4 + 1.68888^3 + 0.97448^2 + 0.58058 + 0.1228}$
6	$\frac{0.06141}{5^6 + 0.928255^5 + 1.93085^4 + 1.20215^3 + 0.93935^2 + 0.30715 + 0.068907}$

6.2 FILTRE RII : MÉTHODE DE LA RÉP. IMP. INVARIANTE

Considérons la fonction de transfert du premier ordre

$$t(s) = \frac{1}{s-p}, p = \omega_p + j\omega_p \tag{41}$$

En calculant sa réponse impulsionnelle et en posant $t = nT_s$, on obtient

$$h(n) = T_s e^{pnT_s} u(n) \tag{42}$$

dont la TZ est

$$H(z) = \frac{T_s}{1 - e^{pT_s} z^{-1}}$$

(43)

6.2 FILTRE RII :

► La réponse *H*(*z*) est une approximation de celle de *t*(*s*)
 ► Si *t*(*s*) est stable (σ_p < 0), *H*(*z*) l'est également (|*e*^{pTs}| < 1).

6.2 FILTRE RII : GÉNÉRALISATION

Pour une fonction de transfert t(s) quelconque :

- Obtenir une décomposition de *t*(*s*) en éléments simples du premier ordre
- Effectuer la transformation suivante pour chacune des fractions :

$$\frac{1}{s-p} \to \frac{T_s}{1-e^{pT_s}z^{-1}}$$

(plus compliqué si la décomposition fait apparaitre des éléments simple du second ordre)

► Exemple : Avec $T_s = 0,05s$, obtenir une fonction de transfert causale H(z) à partir de

$$t(s) = \frac{1}{(s+5)(s+12)}.$$

(44)

(45)

6.2 FILTRE RII : MÉTHODE DE LA TRANSFORMATION BILINÉAIRE

En comparant transformée de Laplace et TZ :

$$X(s) = \int_0^\infty x(t)e^{-st} dt,$$

$$X(z) = \sum_{n=-\infty}^\infty x(nT_s)z^{-n}$$
(46)
(47)

(et si x(t) vérifie certaines conditions), le passage du domaine S au domaine Z peut se faire par

$$z = e^{sT_s} \leftrightarrow s = \frac{1}{T_s} \ln(z). \tag{48}$$

6.2 FILTRE RII :

Cette dernière relation ($s = \frac{1}{T_s} \ln(z)$)peut s'écrire comme un développement en série :

$$s = \frac{2}{T_s} \left[\left(\frac{z-1}{z+1} \right) + \frac{1}{3} \left(\frac{z-1}{z+1} \right)^2 + \frac{1}{5} \left(\frac{z-1}{z+1} \right)^3 + \dots \right]$$
(49)

dont on ne conserve que le premier terme

$$s = \lambda \left(\frac{z-1}{z+1}\right), \lambda = \frac{2}{T_s}.$$
 (50)

6.2 FILTRE RII :

Géométriquement, on fait correspondre le demi-plan complexe gauche avec le disque unité :

6.3 TRANSFORMATIONS DE FONCTIONS DE TRANSFERT :

Il est possible d'utiliser les relations suivantes pour transformer
une fonction de transfert du type passe-bas RII
en une fonction de transfert du type passe-bas, passe-haut, passe-bande ou coupe-bande dont la ou les pulsations de coupure sont spécifiées.

6.3 TRANSFORMATIONS DE FONCTIONS DE TRANSFERT :

Par exemple :

TLL. Transformation passe-bas à passe-bas

$$Z^{-1} = \frac{z^{-1} - \rho_{\rm L}}{1 - \rho_{\rm L} z^{-1}}, \rho_{\rm L} = \frac{\sin\left(\frac{\omega_{\rm IP1} - \omega_{\rm IP2}}{2}\right)}{\sin\left(\frac{\omega_{\rm IP1} + \omega_{\rm IP2}}{2}\right)}$$
(7.5)

 ω_{LP1} : Pulsation de coupure de la fonction de transfert passe-bas originale. ω_{LP2} : Pulsation de coupure de la fonction de transfert passe-bas requise.

 Il existe principalement trois méthodes :
 FENÊTRAGE : on applique une fenêtre de taille N au filtre idéal.
 ÉCHANTILLONNAGE FRÉQUENTIEL : on utilise la transformée de Fourier discrète inverse depuis une fonction discrète représentative du filtre et définie en fréquence.

OPTIMISATION : on cherche à minimiser un critère d'erreur entre la courbe du filtre et le filtre idéal.

► Filtre RIF par échantillonnage fréquentiel :

- 1. On spécifie les caractéristiques souhaitées en fréquence $H_s(\omega)$ pour l'intervalle $-\pi < \omega < \pi$. ($H_s(\omega)$ est 2- π périodique après échantillonnage).
- 2. Les coefficients du filtre sont donnés par transformée de Fourier inverse :

$$h_s(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_s(\omega) e^{in\omega} \mathrm{d}\omega.$$
 (51)

3. On tronque la réponse impulsionnelle du filtre

$$h(n) = h_s(n)w_N(n).$$
(52)

4. On contrôle que l'erreur $H_s(\omega) - H(\omega)$ est acceptable

$$H(\omega) = H_s(\omega) * W_N(\omega).$$
(53)

6. Synthèse de filtres numériques

6.4 FILTRE RIF : PASSE-BAS IDÉAL

► Spécification :

$$H_s(\omega) = \begin{cases} 1 & -\omega_c < \omega < \omega_c \\ 0 & \text{sinon} \end{cases}$$

► Montrons que

$$h_s(n)=\frac{\sin(n\omega_c)}{n\pi}.$$

(54)

(55)

6.4 FILTRE RIF : PASSE-BAS IDÉAL

▶ On ne conserve que *N* échantillons (on traite le cas $\omega = \pi/2$:

$$h(n) = \frac{1}{2} \frac{\sin(n\pi/2)}{n\pi/2} w_N(n)$$
(56)
avec $w_N(n) = \begin{cases} 1 & 0 \le n < N \\ 0 & \text{sinon} \end{cases}$ (57)

On montre que la fonction de transfert est

$$H(\omega) = H_s(\omega) * \frac{\sin(N\omega/2)}{\sin(\omega/2)} e^{-i\omega(N-1)/4}.$$
 (58)

6. Synthèse de filtres numériques

6.4 FILTRE RIF : PASSE-BAS IDÉAL

• Troncature temporelle \Rightarrow ondulations en fréquence.

► Pour éviter ces ondulations, on utilise des fenêtres plus douces :

► En fréquence :

0.5

0.5

▶ Pour éviter ces ondulations, on spécifie le filtre à l'aide d'un gabarit.

► On spécifie trois zones : bande passante, bande de transition et bande atténuée.

► Et on recherches les coefficients d'une structure connue (Chebyshev, Butterworth, McClellan par exemple) qui satisfont ces contraintes.

• ...

6.5 CONCLUSION :

► Il est possible d'utiliser les *toolboxes* de Matlab pour effectuer les calculs (analyse et synthèse d'un filtre).

- ► Ce qui n'a pas été détaillé (principalement) :
 - l'exploitation de la position des pôles et des zéros dans la caractérisation des filtres RII,
 - fonctions de transfert usuelles (peigne, à déphasage minimal ou linéaire),
 - structures (cascades, parallèles, mixte, en treillis),

▶ La littérature est vaste sur ce sujet et la recherche active.