COUPE ROBOTIQUE DES IUT
Sommaire:
- Présentation
- Présentation du projet
- Cahier des charges fonctionnel
- Solution techniques
- Étude et Réalisation des Différentes Parties
- Alimentation et Régulation
- Batterie
- Moteurs de roues
- Régulation de la tension d'alimentation
- Contrôle des moteurs CC par un dual H-Bridge (L298P)
- Principe de fonctionnement d'un H-Bridge (PONT-H)
- Le composant L298N
- Tests effectués avec un SHIELD Arduino (L298P)
- Mode PWM
- Positionnement du robot :Explication du principe
- Approximation par des segments de droites
- Estimation de la position du robot
- Étude et Réalisation Carte Encodeurs
- Roue codeuse
- Valeur reçu par les capteurs
- Interruption et timer
- suivons une ligne droite
- suivons une consigne
- Détection de balles de tennis
- Caméra
- Choix Caméra
- Caméra CMU cam 5
- Programme de gestion du cap
- Mise à l’arrêt du robot et le perçage du ballon
- Capteur de "Mise à l’arrêt" du robot
- Système "perçage du ballon"
- Réalisation Carte des "Entrées et Sorties" et du pont H
- Objectifs et Composants utilisés
- Schéma électrique de la carte (Eagle)
- Routage et Correspondance des pins (Eagle)
- La commande des Moteurs de Roues(L298N H-Bridge)
- Les signaux d'entrée et de sortie
- La carte final et les connecteurs
- Problèmes rencontrés :
- Alimentation et Régulation
- Code complet
- Vidéo de Démonstration
- Bibliographie/références
Sommaire
- 1 Présentation
- 2 Etude et Réalisation des Differentes Parties
- 2.1 Alimentation et Régulation
- 2.2 Contrôle des moteurs CC par un dual H-Bridge (L298P)
- 2.3 Positionnement du robot: Explication du principe
- 2.4 Estimation de la position du robot
- 2.5 Detection des balles de tennis
- 2.6 Caméra
- 2.7 Mise à l’arrêt du robot et le perçage du ballon
- 2.8 Système de Contrôle et Lancement du Ballon (Tennis)
- 2.9 Réalisation Carte des "Entrées et Sorties" et du Pont H
- 3 Code complet
- 4 Vidéo de Démonstration
Présentation
Présentation du projet
Chaque année la France organise un concours robotique des GEII. Et ce concours exige un cahier des charges à respecter.L'objectif est de fabriquer un robot à partir des kits imposer: comprenant le châssis, les moteurs, les roues et la batterie.Ce robot doit être capable d'envoyer un maximum de balles de tennis dans le camp adverse,sans entrer dans le camp adverse et sans jamais contrôler plus d’une balle à la fois
Cahier des charges fonctionnel
Schéma fonctionnel de degré II
Schéma fonctionnelle 1er degres
Solutions techniques
Pour fabriquer ce robot nous avions plusieurs choix pour procéder à la détection des balles de tennis ainsi que le contrôle et direction du robot vers la ligne noir ... , ainsi qu'au guidage vers la position (zone) du ballon . Nous avons choisi pour guider le robot un système hybride composé de roues codeuses et d'une caméra CMUCam Pixy, spécialisée dans la reconnaissance d'objets. La roue codeuse permettra d'effectuer le début du parcours, et sera remplacée par la caméra, plus précise, une fois la distance de détection atteinte. L'évitement des obstacles sera assuré par trois capteurs infrarouges SHARP GP2Y0A21YK0F, permettant la détection d'objets jusqu'à 80 centimètres de distance, qui, placés à l'avant du robot, permettront l'esquive si un obstacle est rencontré.
Etude et Réalisation des Differentes Parties
Alimentation et Régulation
Batterie
La batterie est imposée :
Tension | 12 V |
Capacité | 7 Ah |
Moteurs de roues
Les moteurs sont imposés.
- Caracteristique du moteur:
Marque | Dunkermotoren G 42*25 |
Tension | 15V |
In | 1.45 A |
Ifm | 10.9A |
Rpm | 3300 tr/mn |
Régulation de la tension d'alimentation
- Les besoins :
Pour Arduino MEGA:
Caractéristiques techniques :
Operating Voltage | 5V |
Input Voltage (recommended) | 7-12V |
Input Voltage (limit) | 6-20V |
Total output current MAX | 800mA |
On constate qu'il est possible d'alimenter la carte Arduino MEGA directement avec la tension de la batterie ( 12.8V chargée).
Ce n'est toutefois pas recommandé, car le régulateur intégré dans l'Arduino chaufferait, ce qui pourrait endommager le microcontrôleur.
Solutions Alimentation Arduino MEGA:
- Tension d'alimentation inférieure à 12 V
- Tension régulé de 5V qu'on fait venir directement sur les pattes VCC d'Arduino:
Le courant maximum requis: 800mA
Pour les Moteurs de Roues :
- Tension maximum requise: 15V
- Courant maximum requis: 3.2A
Contrôle des moteurs CC par un dual H-Bridge (L298P)
Principe de fonctionnement d'un H-Bridge (PONT-H)
Le pont-H est une structure utilisée en électronique de puissance pour:
- controle moteurs
- convertisseurs et hacheurs
- onduleurs
- Principe: On active les commutateurs avec differents cominaisons pour obtenir le branchement voulu. Le courant va circuler dans un sens ou dans l'autre dans le moteur, ce qui va permettre d'inverser les sens de rotation du moteur. Avec le pont-H on peut également varier la vitesse en modulant la tension aux bornes du moteur.
Combinaisons de commutateurs possibles pour commander un moteur DC:
Sens + | Fermer A et D |
Sens - | Fermer B et C |
Freinage magnétique | A et C / B et D |
Arret libre | A,B,C,D ouverts |
Autres combinaison | INTERDITES |
Le composant L298N
Nous allons utiliser pour notre robot le composant L298N (traversant) qui a le meme principe de fonctionement que celui en CMS (L298P).Dans la figure suivante on peux voir le cablage du composant, les signaux de commande et les sorties d'alimentation MOTEUR. Dans le tableau nous avons les 4 modes possibles en actionnant les entrées logique C et D ainsi que Venable (PWM) pour varier la tension d'alimentation des moteurs (0-12V).
Tests éffectués avec un SHIELD Arduino (L298P) (
Pour commander les moteurs nous allons utiliser le pont H L298P [ datasheet].
Le composant est ci-dessous:
Pour faire des tests nous avons utlisé le Motor Shield For Arduino. En connectant ce shield à l'arduino nous pouvons commander les deux moteurs (commande du sens et de la vitesse).
- PWM
Nous allons utiliser le shield en mode PWM, on placera donc les jumpers en conséquence.
- Borne du moteur
Nous avons deux bornes (bleues) pour connecter les moteurs CC. Les connecteurs mâles derrière sont identiques à celui des bornes bleues.
- PWRIN
Les moteurs peuvent être alimentés par une alimentation externe lorsque le courant du moteur dépasse les limites fournies par l'Arduino (Il est conseillé de séparer les alimentations d’Arduino et des moteurs). Le changement entre la puissance externe et l'Arduino est mis en œuvre par deux jumpers .
PWRIN: Alimentation externe.
VIN: Alimentation du Arduino.
On placera donc les jumpers d’alimentation sur PWRIN.
On doit avoir quelque chose comme cela:
- Signal de contrôle Tableau de vérité
E1 | M1 | E2 | M2 | Texte de l’en-tête | |
---|---|---|---|---|---|
L | X | Moteur 1 désactivé | L | X | Moteur 2 désactivé |
H | H | Moteur 1 en arrière | H | H | Moteur 2 en arrière |
H | L | Moteur 1 en avant | H | L | Moteur 2 en avant |
PWM | X | Contrôle vitesse PWM | PWM | X | Contrôle vitesse PWM |
NOTE:
H: Niveau haut
L: Niveau bas
X: N'importe quel niveau.
Mode PWM
Commande | Moteur | Pin Arduino | Pin Atmega328p | Signification |
---|---|---|---|---|
M1 | Gauche | 4 | PD4 | Contrôle du sens de rotation |
E1 (PWM) | Gauche | 5 | PD5 | Contrôle de la vitesse de rotation |
M2 | Droit | 7 | PD7 | Contrôle du sens de rotation |
E2 (PWM) | Droit | 6 | PD6 | Contrôle de la vitesse de rotation |
- Exemple de code
Nous allons gérer les moteurs par des signaux PWM (-255 a 255), le signe moins (-) indique que le moteur fonctionne en marche arrière, et le signe plus (+) qu'il fonctionne en marche avant. Ce code nous permet de gérer les deux moteurs par la fonction setVitesse(vG,vD). Dans la suite nous allons l'utiliser pour gérer le déplacement du robot.
Code exemple
#include <avr/io.h>//Librairie AVR
#define topPWM 255 //Valeur Max du PWM (8bits)
void initMoteur()//PWM sur PD5 et PD6
{
//fpwm = fq / (topPWM * p)
//fpwmi:fréquence du PWM
//fq:fréquence du quark
//topPWM: valeur maximum du PWM
//p:prédiviseur
//Déclaration de sorties
DDRD |= (1 << PD4);//Sens du moteur Gauche
DDRD |= (1 << PD5);//PWM du moteur Gauche
DDRD |= (1 << PD7);//Sens du moteur Droit
DDRD |= (1 << PD6);//PWM du moteur Droit
TCCR0B |= (1 << CS00) | (1 << CS01);//Prédiviseur P=64
TCCR0A |= (1 << WGM00) | (1 << WGM01);//Mode FAST PWM
TCCR0A |= 1 << COM0A1;//PWM sur OC0A
TCCR0A |= 1 << COM0B1;//PWM sur OC0B
OCR0A = 0;//Valeur de comparaison pour A --> PD6
OCR0B = 0;//Valeur de comparaison pour B --> PD5
}
void setMoteurG(int16_t vit)//fonction pour gérer le moteur gauche
{
if (vit < 0)
{
vit = -vit;
PORTD |= (1 << PD4);//Moteur Gauche en arrière
}
else PORTD &= ~ (1 << PD4);//Moteur Gauche en avant
if (vit > topPWM) vit = topPWM;//Si jamais on met une valeur supérieure à 255, la vitesse maximum sera 255
OCR0B = vit;//Action sur le PWM --> PD5
}
void setMoteurD(int16_t vit)//fonction pour gérer le moteur droit
{
if (vit < 0)
{
vit = -vit;
PORTD |= (1 << PD7);//Moteur Droit en arrière
}
else PORTD &= ~ (1 << PD7);//Moteur Droit en avant
if (vit > topPWM) vit = topPWM;//Si jamais on met une valeur supérieure a 255, la vitesse maximum sera 255
OCR0A = vit;//Action sur le PWM --> PD6
}
void setVitesse(int16_t vG, int16_t vD)//cette fonction nous permet gérer les deux moteurs avec "une seule" ligne
{
setMoteurD(vD);
setMoteurG(vG);
}
int main()
{
initMoteur();
while(1)
{
setVitesse(100,100);//Exemple d’utilisation
}
}
Positionnement du robot: Explication du principe
Approximation par des segments de droites
Le positionnement du robot est obtenu ...
Estimation de la position du robot
Etude et Réalisation Carte Encodeurs
- CAPTEUR TCUT 1300. Nous allons utiliser ce capteur il nous permettra d'avoir le sens et la vitesse de chaque roue.
The TCUT1300X01 is a compact transmissive sensor that includes an infrared emitter and two phototransistor detectors, located face-to-face in a surface mount package.
Code example
- TIMER 1
Suivons une ligne droite
Code de Suivons une ligne droite
Suivons une consigne
ws2812_config.h
Detection des balles de tennis
Caméra
Choix camera
Nous avons testé 3 cameras différentes, la PiCam, la CMUCam3 et la CMUCam5 Pixy
Nous avons choisi d'utiliser la CMUCam 5 http:.. site CMU cam 5 car elle est beaucoup plus simple d'utilisation que les deux autres. En effet, celle ci dispose d'une interface dre réglage, PixyMon, lui permettant d'enregistrer les signatures des objets à détecter, et de régler l'acquisition pour restreindre la détection à ces signatures précises. De plus, celle ci dispose d'un support mû par des servomoteurs permettant d'élargir son champ de vision.
Camera CMU cam 5
Tout d’abord nous avons réalisé une simple reconnaissance d'objet grâce au logiciel, il suffit pour cela de sélectionner l'objet en question via une interface, Pixymon. Nous avons ensuite choisi d'utiliser une balise lumineuse pour que la camera la repère le plus loin possible. balise test.
Grâce à cette balise nous avons pu déterminer la distance maximale de détection avec une balise de taille réglementaire. Nous avons ainsi déterminé que la balise était capable d'effectuer une détection à approximativement 6m.
Programme de gestion du cap
Nous avons réalisé un programme permettant de récupérer la position en X d'un objet par rapport à la caméra
Code exemple
//////////////////////////////////////////
// Fonction cap
//////////////////////////////////////////
/**************************************************************
Description : indique le cap à suivre grace à la camera Pixy.
Entrées : Aucune
Sorties : Un int allant de -160 à 160. Une valeur nulle indique
que la cible se trouve au centre du champ de vision
de Pixy. Une valeur positive indique que la cible se
trouve à droite de Pixy, une valeur négative indique
la gauche.
***************************************************************/
int cap()
{
int compteur1;
uint16_t blocks;
/*Récupération des "blocs". Un bloc est une zone rectangulaire
définie par Pixy, possedant plusieurs caractéristiques (hauteur,
position en x/y, couleur...)*/
blocks = pixy.getBlocks();
/*Dans le cas ou un bloc est détecté, la caméra renverra la
position en x de celui ci. La valeur est centrée en zero.*/
if (blocks)
{
return(pixy.blocks[0].x );
}
}
Cette fonction a été testée avec le main suivant
Code exemple
#include <SPI.h>
#include <Pixy.h>
Pixy pixy;
void setup()
{
Serial.begin(9600);
Serial.print("Starting...\n");
pixy.init();
}
int cap()
{
int compteur1;
uint16_t blocks;
blocks = pixy.getBlocks();
if ((blocks) && (pixy.blocks[0].x != 0))
{
return(pixy.blocks[0].x );
}
}
void loop()
{
delay(100);
Serial.println(cap());
delay(500);
}
Il est nécessaire d'appeler les bibliothèques SPI.h et Pixy.h, et de déclarer et d'initialiser Pixy dans le setup. Ceprogramme ne permet cepandant pas l'usage des servomoteurs, limitant le champ de vision.
Mise à l’arrêt du robot et le perçage du ballon
La mise à l’arrêt du robot et le perçage du ballon doivent avoir lieu simultanément. Cela doit se produire quand le robot est arrivé dans le coin opposé.
Capteur de "Mise à l’arrêt" du robot
Pour se diriger vers le bon coin, le robot est guidé par les roues codeuses et par la caméra qui suit la couleur jaune des balles de tennis présente dans son camp. Maintenant qu'il est guidé dans la bonne direction, nous devons procéder à une mise à l’arrêt rapide des qu il franchi le camp adverse en détectant la ligne noir qui sépare ces deux dernières à l'aide du CNY70 qui nous permettra d’arrêter le robot afin qu'il effectue un retour en arrière pour chercher les autres balles présentent dans son camp .
- Le capteur CNY70 :
Nous pourrons utiliser ce capteur infrarouge pour détecter la couleur du sol.
- Schéma et dimensionement des composants
Emetteur: If = 20mA (Vf = 1.15V), Re = (5V-Vf)/If = 195 ohm.
Collecteur: Ic = 0.5mA (pour If = 20mA, Vce = 5V, d = 2mm), Rc = Vce /Ic = 10 kohm.
Nous devons obtenir les signaux correspondents:
Sol noir/surface non reflechissante | env 0 V |
Sol bleu | env 3 V |
Sol blanc/surface bien reflechissante | env 5 V |
- Schéma électrique, routage en Eagle et fabrication de la carte
Systeme "Perçage du Ballon"
- La partie mécanique
a remplir ...
Système de Contrôle et Lancement du Ballon (Tennis)
Réalisation Carte des "Entrées et Sorties" et du Pont H
Objectifs et Composants utilisés )
- Objectif: concevoir une carte compacte qui va héberger le composant L298N pour le contrôle des moteurs ainsi que toutes les entrées et les sorties.La carte devra s’emboîter sur la carte Arduino MEGA.
Les Entrées | Les Sorties |
---|---|
Alimentation (5V) | Moteur Gauche |
Alimentation moteurs (12V) | Moteur Droit |
Encodeurs (TCUT1300) | Commande perçage Ballon |
Camera (CMUCam 5) | |
3 capteurs obstacles (IR) | |
Couleur Sol (CNY70) | |
PWM Moteurs | |
Sens rotation Moteurs |
- Références des composants utilisés:
Qté | Nom | Référence Eagle |
---|---|---|
1 | Dual H-Bridge | L298n |
1 | Radiateur | pour L298n |
4 | Résistance | 1 ohm package 207/10 |
8 | Diode | 1N4004 |
2 | Condensateur | E 1.8-4 package 100nF |
1 | Connecteur ISP | AVR-ISP-6 |
1 | Connecteur | Farnell 6 pins CMS |
6 | Connecteur | Molex 2 pins 22-27-2021-02 traversant |
3 | Connecteur | Molex 3 pins 22-27-2031-03 traversant |
Schéma électrique de la carte (Eagle)
Routage et correspondance des pins (Eagle)
La commande des Moteurs de Roues (L298n H-Bridge)
Les signaux d'entrée et de sortie
La carte finale et les connecteurs
Problèmes rencontrés:
a remplir
- après la fabrication de la carte
- après avoir soudé tous les composants
De même se servir toujours de l'oscilloscope pour visualiser les différents signaux en temps réel.
Code complet
Pour gérer les différents fonctionalités du robot nous avons utilisé le code suivant:
Code exemple
a remplir .. </source>